Simulink® Test™

Reference

<@

MATLAB&SIMULINK?

R2019a -) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ Reference
© COPYRIGHT 2015-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019

Online Only
Online Only
Online only

Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only

New for Version 1.0 (Release 2015a)
Revised for Version 1.1 (Release 2015b)
Rereleased for Version 1.0.1 (Release
2015aSP1)

Revised for Version 2.0 (Release 2016a)
Revised for Version 2.1 (Release 2016b)
Revised for Version 2.2 (Release 2017a)
Revised for Version 2.3 (Release 2017Db)
Revised for Version 2.4 (Release 2018a)
Revised for Version 2.5 (Release 2018b)
Revised for Version 3.0 (Release 2019a)

Functions — Alphabetical List

1]

Classes — Alphabetical List

2|

Methods — Alphabetical List

3|

Blocks — Alphabetical List

4

Functions — Alphabetical List

1 Functions — Alphabetical List

disp

Display results of sltest.AssessmentSet or sltest.Assessment

Syntax

disp(as)

Description

disp(as) displays the results of the assessment object as.

Examples

Display results of an assessment
Display the results of the assessment as, where as is an sltest.Assessment.
disp(as)

sltest.Assessment
Package: sltest

Properties:
Name: 'Simulink:verify high'
BlockPath: [1x1 Simulink.SimulationData.BlockPath]
Values: [1x1 timeseries]
Result: Fail

Input Arguments

as — Assessment object
sltest.Assessment | sltest.AssessmentSet

Assessment object for which to display results.

1-2

disp

Example: as

See Also

sltest.Assessment | sltest.AssessmentSet | sltest.getAssessments

Introduced in R2016b

1-3

1 Functions — Alphabetical List

1-4

find

Find assessments in sltest.AssessmentSet or sltest.Assessment object

Syntax

asout find(as, 'PropertyName', 'PropertyValue')

asout find(as, 'PropertyNamel', 'PropertyValuel', '-logical’,
'"PropertyName2', 'PropertyValue2'...)

asout = find(as, '-regexp', 'PropertyName', 'PropertyValue')

Description

asout = find(as, 'PropertyName', 'PropertyValue') returns the results asout
specified by the properties matching 'PropertyName', and 'PropertyValue'.

asout = find(as, 'PropertyNamel', 'PropertyValuel', '-logical’,
'"PropertyName2', 'PropertyValue2'...) returns the results asout specified by
multiple 'PropertyName', 'PropertyValue' pairs, and the '—logical' operator
specifying the connective between the pairs. '—logical' can be '—and' or '—or".

asout = find(as,'-regexp', 'PropertyName', 'PropertyValue') returns
assessment results whose 'PropertyName' matches the regular expression

'"PropertyValue'. When using regular expression search, 'PropertyName' can be the
assessment object 'Name' or 'BlockPath'.

Examples

Get Assessments from a Simulation

This example shows how to simulate a model with verify statements and obtain
assessment results via the programmatic interface.

find

Get the Assessment Set and One Assessment Result

1. Open the model.

open_system(fullfile(matlabroot, 'examples’, 'simulinktest', ...
'sltestRollRefTestExample.slx'))

% Turn the command line warning off for verify() statements
warning off Stateflow:Runtime:TestVerificationFailed

This madel is used to show how verify() statements work in Test Sequence and Test Assessment blocks,
The Rell Reference subsystem is a copy of a component of a larger model.
To wiew the larger model, enter RollAutopilothdiRef in MATLAB(R).

Copyright 2016 The MathWorks, Inc

Phi | — | | Fhi
_I Phi
K (z-1) »{DD_Phiki > »ap eng Phi Ref| et i »
. z 3 APEng FhiRef
ity » | Tum Knob
Turninob
Roll Reference
| PhiRef
| Phi 1
> .kPElé
| Tumlnob

2. Run the model.

s = sim('sltestRollRefTestExample');

3. Get the assessment set.

as = sltest.getAssessments('sltestRollRefTestExample');

4. Get assessment 3 from the assessment set.

as3 = get(as,3);

1-5

1 Functions — Alphabetical List

Display Results of the Assessment Set and Assessment Result

1. Get summary of the assessment set.

asSummary = getSummary(as)

asSummary

struct with fields:

Total: 6
Untested: 3
Passed: 2
Failed: 1
Result: Fail

2. Display the result of assessment 3.
disp(as3)

sltest.Assessment
Package: sltest

Properties:
Name: 'Simulink:verify high'
BlockPath: [1x1 Simulink.SimulationData.BlockPath]
Values: [1x1 timeseries]
Result: Fail

3. Find untested or failed results in the assessment set.

asFailUntested = find(as, 'Result',slTestResult.Fail, '-or',...

'Result',slTestResult.Untested)

asFailUntested =

sltest.AssessmentSet

Summary:
Total: 4
Untested: 3
Passed: 0

1-6

find

Failed: 1
Result: Fail

Untested Assessments (first 10):
2 : Untested 'Simulink:verify high'
3 : Untested 'Simulink:verifyTKLow'
4 : Untested 'Simulink:verifyTKNormal'

Failed Assessments (first 10):
1 : Fail 'Simulink:verify high'

4. Find assessments under the Test Assessment block, using a regular expression.

assessBlock

assessBlock

sltest.AssessmentSet
Summary:

Total: 6

Untested: 3

Passed: 2

Failed: 1

F

Result: Fail

Untested Assessments (first 10):
4 : Untested 'Simulink:verify high'
5 : Untested 'Simulink:verifyTKLow'
6 : Untested 'Simulink:verifyTKNormal'

Passed Assessments (first 10):
1 : Pass 'Simulink:verify normal'
2 : Pass 'Simulink:verify low'

Failed Assessments (first 10):
3 : Fail 'Simulink:verify high'

Re-enable warnings

find(as, '-regexp', 'BlockPath','.[Aa]lssess")

1-7

1 Functions — Alphabetical List

1-8

warning on Stateflow:Runtime:TestVerificationFailed

Input Arguments

as — Assessment object

sltest.Assessment | sltest.AssessmentSet
Assessment object to search.

Example: as

'-logical' — Logical operator

'—and' | '—or'

Logical operator connecting multiple property names or property values.
Example: '—and'

'PropertyName’ — Type of property to search
‘Name' | 'Result' | ‘BlockPath’

Type of property to search.

Example: 'BlockPath'

'PropertyValue' — Property value to search
character vector | slTestResult enumeration

Property value to search, specified as a character vector. Can be a regular expression
when using the '—regexp' argument.

When using the 'Result' property name, 'PropertyValue' is an enumeration of the
assessment result:

* slTestResult.Fail for failed assessments
* slTestResult.Pass for passed assessments
* slTestResult.Untested for untested assessments

Example: s1TestResult.Fail

Example: '[Aa]sess'

find

'—regexp' — Command to search using regular expression
character vector

Regular expression for BlockPath properties search, specified as a character vector.

Example: '—regexp'

Output Arguments

asout — Assessment results output
sltest.assessmentSet object

Assessment results output from the find operation, specified as an
sltest.assessmentSet object.

Example: sltest.AssessmentSet

See Also

sltest.Assessment | sltest.AssessmentSet | sltest.getAssessments

Introduced in R2016b

1-9

1 Functions — Alphabetical List

1-10

get

Get assessment of sltest.AssessmentSet

Syntax

indexResult = get(as,index)

Description

indexResult = get(as,index) gets the individual assessment result indexResult
from the sltest.AssessmentSet as, specified by the integer index.

Examples

Get Assessments from a Simulation

This example shows how to simulate a model with verify statements and obtain
assessment results via the programmatic interface.

Get the Assessment Set and One Assessment Result

1. Open the model.

open_system(fullfile(matlabroot, 'examples’, 'simulinktest', ...
'sltestRollRefTestExample.slx'))

% Turn the command line warning off for verify() statements
warning off Stateflow:Runtime:TestVerificationFailed

get

This model is used to show how verify() statements work in Test Sequence and Test Assessment blocks,

The Rell Reference subsystem is a copy of a component of a larger model.
To wiew the larger model, enter RollAutopilotMdiRef in MATLAB(R).

Copyright 2016 The MathWorks, Inc

Phi »] Phi
_I Phi
PhiRef
K (z-1) p| OD_PhifRt > »{ AP eng Phi Ref _
&. z APEng PhiFef
ety »] Tumn Knob
Tumdnob
Roll Reference

Yy ¥ vu

2. Run the model.

s = sim('sltestRollRefTestExample');

3. Get the assessment set.

as = sltest.getAssessments('sltestRollRefTestExample');

4. Get assessment 3 from the assessment set.

as3 = get(as,3);

Display Results of the Assessment Set and Assessment Result
1. Get summary of the assessment set.

asSummary = getSummary(as)

asSummary

struct with fields:

APEl%

TumKnob

1-11

1 Functions — Alphabetical List

Total: 6
Untested: 3
Passed: 2
Failed: 1

F

Result: Fail

2. Display the result of assessment 3.
disp(as3)

sltest.Assessment
Package: sltest

Properties:
Name: 'Simulink:verify high'
BlockPath: [1x1 Simulink.SimulationData.BlockPath]
Values: [1x1 timeseries]
Result: Fail

3. Find untested or failed results in the assessment set.

asFailUntested = find(as, 'Result',slTestResult.Fail, '-or',...

'Result',slTestResult.Untested)

asFailUntested =

sltest.AssessmentSet
Summary:

Total: 4

Untested: 3

Passed: 0

Failed: 1

F

Result: Fail

Untested Assessments (first 10):
2 : Untested 'Simulink:verify high'
3 : Untested 'Simulink:verifyTKLow'
4 : Untested 'Simulink:verifyTKNormal'

Failed Assessments (first 10):
1 : Fail 'Simulink:verify high'

1-12

get

4. Find assessments under the Test Assessment block, using a regular expression.

assessBlock = find(as, '-regexp', 'BlockPath','.[Aalssess"')

assessBlock =

sltest.AssessmentSet
Summary:

Total: 6

Untested: 3

Passed: 2

Failed: 1

F

Result: Fail

Untested Assessments (first 10):
4 : Untested 'Simulink:verify high'
5 : Untested 'Simulink:verifyTKLow'
6 : Untested 'Simulink:verifyTKNormal'

Passed Assessments (first 10):
1 : Pass 'Simulink:verify normal’
2 : Pass 'Simulink:verify low'

Failed Assessments (first 10):
3 : Fail 'Simulink:verify high'

Re-enable warnings

warning on Stateflow:Runtime:TestVerificationFailed

Input Arguments

as — Assessment set from which to get a single assessment
sltest.AssessmentSet

This is the sltest.AssessmentSet, from which to get a single assessment.

Example: sltest.AssessmentSet

index — Index of single assessment
integer

1-13

1 Functions — Alphabetical List

Index of a single assessment to return to the sltest.Assessment object, specified as an
integer.

Example: 3

See Also

sltest.Assessment | sltest.AssessmentSet | sltest.getAssessments

Introduced in R2016b

1-14

getSummary

getSummary

Get summary of sltest.AssessmentSet

Syntax

testOut = getSummary(as)

Description

testOut = getSummary(as) gets the summary testOut of the
sltest.AssessmentSet as.

Examples

Get Assessments from a Simulation

This example shows how to simulate a model with verify statements and obtain
assessment results via the programmatic interface.

Get the Assessment Set and One Assessment Result

1. Open the model.

open_system(fullfile(matlabroot, 'examples’, 'simulinktest', ...
'sltestRollRefTestExample.slx"'))

% Turn the command line warning off for verify() statements
warning off Stateflow:Runtime:TestVerificationFailed

1-15

Functions — Alphabetical List

1-16

This model is used to show how verify() statements work in Test Sequence and Test Assessment blocks,

The Rell Reference subsystem is a copy of a component of a larger model.
To wiew the larger model, enter RollAutopilotMdiRef in MATLAB(R).

Copyright 2016 The MathWorks, Inc

>] Ph
Ph
PhiRef
K z-1) » #ap eng Phi Ref i
&. z APEng PhiFef
] Tumn Knob
Tumdnob
Roll Reference

Yy ¥ vu

2. Run the model.

s = sim('sltestRollRefTestExample');

3. Get the assessment set.

as = sltest.getAssessments('sltestRollRefTestExample');

4. Get assessment 3 from the assessment set.

as3 = get(as,3);

Display Results of the Assessment Set and Assessment Result
1. Get summary of the assessment set.

asSummary = getSummary(as)

asSummary

struct with fields:

PhiRef

APEng

TumKnob

getSummary

Total:
Untested:
Passed:
Failed:
Result:

ail

2. Display the result of assessment 3.

disp(as3)

sltest.Assessment
Package: sltest

Properties:

Name:
BlockPath:
Values:
Result:

'Simulink:verify high'

[1x1 Simulink.SimulationData.BlockPath]
[1x1 timeseries]

Fail

3. Find untested or failed results in the assessment set.

asFailUntested = find(as, 'Result',slTestResult.Fail, '-or',...

'Result',slTestResult.Untested)

asFailUntested =

sltest.AssessmentSet

Summary:
Total:
Untested:
Passed:
Failed:
Result:

4
3
0
1
F

ail

Untested Assessments (first 10):
2 : Untested 'Simulink:verify high'
3 : Untested 'Simulink:verifyTKLow'
4 : Untested 'Simulink:verifyTKNormal'

Failed Assessments (first 10):

1 : Fail '

Simulink:verify high'

1-17

1 Functions — Alphabetical List

4. Find assessments under the Test Assessment block, using a regular expression.

assessBlock = find(as,'-regexp', 'BlockPath','.[Aa]ssess")

assessBlock =

sltest.AssessmentSet
Summary:

Total: 6

Untested: 3

Passed: 2

Failed: 1

F

Result: Fail

Untested Assessments (first 10):
4 : Untested 'Simulink:verify high'
5 : Untested 'Simulink:verifyTKLow'
6 : Untested 'Simulink:verifyTKNormal'

Passed Assessments (first 10):
1 : Pass 'Simulink:verify normal’
2 : Pass 'Simulink:verify low'

Failed Assessments (first 10):
3 : Fail 'Simulink:verify high'

Re-enable warnings

warning on Stateflow:Runtime:TestVerificationFailed

Input Arguments

as — Assessment set from which to get a summary

sltest.AssessmentSet

This is the sltest.AssessmentSet, from which to get a summary.

Example: sltest.AssessmentSet

1-18

getSummary

Output Arguments

testOut — Assessment summary
struct

Summary of the assessment set, specified as a struct.

See Also

sltest.Assessment | sltest.AssessmentSet | sltest.getAssessments

Introduced in R2016b

1-19

1 Functions — Alphabetical List

sltest.getAssessments

Returns test assessment set object

Syntax

as = sltest.getAssessments(model)

Description

as = sltest.getAssessments(model) returns as, an sltest.AssessmentSet
from assessments in model. Simulate the model before getting the assessment results.

as includes results from:

* verify statements
* Blocks in the Model Verification library

Examples

Create an Assessment Set Object

as = sltest.getAssessments('sltestRollRefTestExample')

Get Assessments from a Simulation

This example shows how to simulate a model with verify statements and obtain
assessment results via the programmatic interface.

Get the Assessment Set and One Assessment Result

1. Open the model.

open_system(fullfile(matlabroot, 'examples’, 'simulinktest', ...
'sltestRollRefTestExample.slx"'))

1-20

sltest.getAssessments

% Turn the command line warning off for verify() statements
warning off Stateflow:Runtime:TestVerificationFailed

This madel is used to show how verify() statements work in Test Sequence and Test Assessment blocks,
The Roll Reference subsystem is a copy of a component of a larger model.
To wiew the larger model, enter RollAutopilotMdiRef in MATLAB(R).

Copyright 2016 The MathWorks, Inc

Phi

h
3

-
A

Phi

Frifel
K (z-1) p| DD_PhifRt > » AP eng Phi Ref _ > ﬂ
ﬁ- z APEng PhiFef

el » # Tum Knob
Tumdnob

Roll Reference

Yy ¥y yvyvwy
]
3

APEl%

TumKnob

2. Run the model.
s = sim('sltestRollRefTestExample');

3. Get the assessment set.

as = sltest.getAssessments('sltestRollRefTestExample');

4. Get assessment 3 from the assessment set.

as3 = get(as,3);

Display Results of the Assessment Set and Assessment Result
1. Get summary of the assessment set.

asSummary = getSummary(as)

asSummary

1-21

1 Functions — Alphabetical List

struct with fields:

Total: 6
Untested: 3
Passed: 2
Failed: 1

F

Result: Fail

2. Display the result of assessment 3.
disp(as3)

sltest.Assessment
Package: sltest

Properties:
Name: 'Simulink:verify high'
BlockPath: [1x1 Simulink.SimulationData.BlockPath]
Values: [1x1 timeseries]
Result: Fail

3. Find untested or failed results in the assessment set.

asFailUntested = find(as, 'Result',slTestResult.Fail, '-or',...

'Result',slTestResult.Untested)

asFailUntested =

sltest.AssessmentSet
Summary:

Total: 4

Untested: 3

Passed: 0

Failed: 1

F

Result: Fail

Untested Assessments (first 10):
2 : Untested 'Simulink:verify high'
3 : Untested 'Simulink:verifyTKLow'
4 : Untested 'Simulink:verifyTKNormal'

1-22

sltest.getAssessments

Failed Assessments (first 10):
1 : Fail 'Simulink:verify high'

4. Find assessments under the Test Assessment block, using a regular expression.

assessBlock

find(as, '-regexp', 'BlockPath','.[Aa]lssess")

assessBlock

sltest.AssessmentSet
Summary:

Total: 6

Untested: 3

Passed: 2

Failed: 1

F

Result: Fail

Untested Assessments (first 10):
4 : Untested 'Simulink:verify high'
5 : Untested 'Simulink:verifyTKLow'
6 : Untested 'Simulink:verifyTKNormal'

Passed Assessments (first 10):
1 : Pass 'Simulink:verify normal'
2 : Pass 'Simulink:verify low'

Failed Assessments (first 10):
3 : Fail 'Simulink:verify high'

Re-enable warnings

warning on Stateflow:Runtime:TestVerificationFailed

See Also

sltest.Assessment | sltest.AssessmentSet

Topics
“View Graphical Results From Model Verification Library”

1-23

1 Functions — Alphabetical List

Introduced in R2016b

1-24

sltest.harness.check

sltest.harness.check

Compare component under test between harness model and main model

Syntax

[CheckResult,CheckDetails] = sltest.harness.check(harnessOwner,
harnessName)

Description

[CheckResult,CheckDetails] = sltest.harness.check(harnessOwner,
harnessName) computes the checksum of the component under test in the harness
model harnessName and compares it to the checksum of the component harnessOwner
in the main model, returning the overall CheckResult and additional CheckDetails of
the comparison.

Examples

Compare Component Under Test Between Model and Harness

This example shows how to compare a component under test between the main model
and the test harness. Comparing the component under test can help you determine if the
CUT contains unsynchronized changes.

Check the Controller subsystem in the f14 model against the Controller subsystem
in a test harness.

1. Load the model.

load_system('fl4');

2. Create a test harness for Controller.
sltest.harness.create('fl4/Controller', 'Name', 'ControllerHarness');

3. Run the comparison.

1-25

1 Functions — Alphabetical List

[CheckResult,CheckDetails] = sltest.harness.check('fl4/Controller',...
'"ControllerHarness');

4. View the overall result.
CheckResult

CheckResult = logical
1

5. View the details of the comparison.
CheckDetails

CheckDetails = struct with fields:
overall: 1
contents: 1
reason: 'The checksum of the harnessed component and the component in the main m

clear('CheckResult', 'CheckDetails');
close system('f14',0);

Input Arguments

harnessOwner — Model or component
character vector | double

Model or component handle or path, specified as a character vector or double.
Example: 1.9500e+03
Example: 'model name'

Example: 'model name/Subsystem'

harnessName — Harness name
character vector

The name of the harness, specified as a character vector.

Example: 'harness name'

1-26

sltest.harness.check

Output Arguments

CheckResult — Result of comparison
true | false

The result of the component comparison between the harness model and the system
model, returned as true or false.

For a block diagram harness, the function returns CheckResult = true.
For a virtual subsystem harness, the function returns CheckResult = false.

CheckDetails — Details of the check operation
structure

Details of the check operation, returned as a structure. Structure fields contain the
comparison results for the overall component, the component contents, the component
interface, and a reason for the comparison result. If sltest.harness. check returns
false, rebuild the test harness and retry sltest.harness.check.

See Also

sltest.harness.close | sltest.harness.create|sltest.harness.delete|
sltest.harness.export|sltest.harness.find | sltest.harness.load |
sltest.harness.open|sltest.harness.push|sltest.harness.rebuild |
sltest.harness.set

Introduced in R2015a

1-27

1 Functions — Alphabetical List

sltest.harness.clone

Copy test harness

Syntax

sltest.harness.clone(HarnessOwner,HarnessName)
sltest.harness.clone(HarnessOwner,HarnessName, NewHarness)
sltest.harness.clone(HarnessOwner,HarnessName, Name,Value)

Description

sltest.harness.clone(HarnessOwner,HarnessName) clones the test harness
HarnessName associated with the model or component HarnessOwner. The cloned
harness contains the source harness model contents, configuration settings, and
callbacks.

sltest.harness.clone(HarnessOwner,HarnessName,NewHarness) uses an
additional argument NewHarness to specify the name of the cloned harness.

sltest.harness.clone(HarnessOwner,HarnessName,Name,Value) clones the test
harness HarnessName associated with HarnessOwner using additional options specified
by one or more Name, Value pair arguments.

Examples

Clone a Subsystem Test Harness

Create a test harness ControllerHarness1 for the Controller subsystem of the
model f14. Clone the harness and save it as ControllerHarness?2.

f14

sltest.harness.create('fl4/Controller', 'Name', 'ControllerHarnessl',...
'SynchronizationMode', 'SyncOnOpenAndClose')
sltest.harness.clone('fl4/Controller', 'ControllerHarnessl', 'ControllerHarness2"')

1-28

sltest.harness.clone

Clone the test harness ControllerHarnessl created in the previous step to the
Aircraft Dynamics Model subsystem and save it as ControllerHarnessClone.

sltest.harness.clone('fl4/Controller', 'ControllerHarnessl', 'DestinationOwner', ...
'fl4/Aircraft Dynamics Model', 'Name', 'ControllerHarnessClone')

Input Arguments

HarnessOwner — Model or component
character vector | double

Model or component handle or path, specified as a character vector or a double.
Example: 1.9500e+03

Example: 'f14'

Example: 'f14/Controller'

HarnessName — Source harness name
character vector

The name of the source harness, specified as a character vector.

Example: 'ControllerHarness'

NewHarness — Cloned harness name
character vector

The name of the cloned harness, specified as a character vector. If no value is specified, a
default value is automatically generated.

Example: 'ControllerHarness2'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'DestinationOwner', 'model3/
Controller3', 'Name', 'newClonedHarness'

1-29

1 Functions — Alphabetical List

1-30

DestinationOwner — Owner block to which the harness is cloned
harnessOwner (default) | character vector

Owner block to which the test harness is cloned, specified as the comma-separated pair
consisting of 'DestinationOwner' and a character vector.
Example: 'DestinationOwner', 'model3/Controller3’

Name — Name of the cloned test harness
autogenerated name (default) | character vector

The name of the cloned test harness, specified as the comma-separated pair consisting of
'"Name' and a character vector. If no value is specified for Name, a default value is
automatically generated.

Example: 'Name', 'newClonedHarness'

See Also

sltest.harness.check | sltest.harness.close|sltest.harness.create |
sltest.harness.delete | sltest.harness.export|sltest.harness.find |
sltest.harness.load | sltest.harness.open|sltest.harness.push |
sltest.harness.rebuild | sltest.harness.set

Introduced in R2015b

sltest.harness.close

sltest.harness.close

Close test harness

Syntax

sltest.harness.close(modelName)
sltest.harness.close(harnessOwner)
sltest.harness.close(harnessOwner,harnessName)

Description

sltest.harness.close(modelName) closes the open test harness associated with the
model modelName.

sltest.harness.close(harnessOwner) closes the open test harness associated with
the model or component harnessOwner.

sltest.harness.close(harnessOwner, harnessName) closes the test harness
harnessName, which is associated with the model or component harnessOwner.

Examples

Close a Harness Associated With a Subsystem

Close the test harness named controller harness, associated with the subsystem
Controller in the model f14.

fl14;
sltest.harness.create('fl4/Controller', 'Name', 'sample controller harness');
sltest.harness.open('fl4/Controller', 'sample controller harness')
sltest.harness.close('fl4/Controller', 'sample controller harness'

);

1-31

1 Functions — Alphabetical List

1-32

Close a Harness Associated With a Top-level Model

Close the test harness named sample harness, which is associated with the model f14.

f14;

sltest.harness.create('f14', 'Name', 'sample harness');
sltest.harness.open('f14', 'sample harness');
sltest.harness.close('f1l4', 'sample harness');

Input Arguments

modelName — Model name
character vector | double

Model handle or path, specified as a character vector or double.
Example: 1.9500e+03

Example: 'model name'

harnessOwner — Model or component name
character vector | double

Model or component handle or path, specified as a character vector or double.
Example: 1.9500e+03
Example: 'model name'

Example: 'model name/Subsystem'

harnessName — Harness name
character vector

The name of the harness, specified as a character vector.

Example: 'harness name'

See Also

sltest.harness.check | sltest.harness.create|sltest.harness.delete |
sltest.harness.export|sltest.harness.find | sltest.harness.load |
sltest.harness.open | sltest.harness.push|sltest.harness.rebuild |
sltest.harness.set

sltest.harness.close

Introduced in R2015a

1-33

1 Functions — Alphabetical List

1-34

sltest.harness.convert

Convert test harnesses between internal and external storage

Syntax

sltest.harness.convert(modelName)
sltest.harness.convert(modelName, conversion)

Description

sltest.harness.convert(modelName) converts the test harnesses storage type for
modelName.

sltest.harness.convert(modelName, conversion) converts test harnesses storage

type using the additional option conversion specifying which storage type is being
converted to.

Examples

Convert Test Harnesses from External to Internal

sltest.harness.convert('f1l4', 'InternalToExternal')

Input Arguments

modelName — Model name
character vector

Model handle or path, specified as a character vector.

Example: 'model name'

sltest.harness.convert

conversion — Conversion type
"InternalToExternal' | 'ExternalToInternal’

Conversion to perform, specified as a character vector.

Example: 'InternalToExternal’

See Also

sltest.harness.check | sltest.harness.close|sltest.harness.create |
sltest.harness.delete | sltest.harness.export|sltest.harness.open

Introduced in R2016a

1-35

1 Functions — Alphabetical List

1-36

sltest.harness.create

Create test harness

Syntax

sltest.harness.create(harnessOwner)
sltest.harness.create(harnessOwner,Name,Value)

Description

sltest.harness.create(harnessOwner) creates a test harness for the model
component harnessOwner, using default properties.

sltest.harness.create(harnessOwner,Name, Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Create Harness for a Model

Create harness for the f14 model. The harness is called sample harness and has a
Signal Builder block source and a scope sink.

f14;

sltest.harness.create('f14"', 'Name', 'sample harness', 'Source', ...
'Signal Builder','Sink', 'Scope')

Create Harness for a Subsystem

Create harness for the Controller subsystem of the f14 model. The harness allows
editing of Controller and uses default properties for the other options.

sltest.harness.create

f14;
sltest.harness.create('fl4/Controller', 'EnableComponentEditing', true);

Create Default Harness for a Subsystem

Create a default harness for the Controller subsystem of the f14 model.

f14;
sltest.harness.create('fl4/Controller');

Input Arguments

harnessOwner — Model or component
character vector | double

Model or component handle or path, specified as a character vector or double.
Example: 1.9500e+03
Example: 'model name'

Example: 'model name/Subsystem'

Name-Value Pair Options

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'Name', 'controller harness', 'Source', 'Signal
Builder', 'Sink', 'To File' specifies a harness named controller harness, with
a signal builder block source and To File block sinks for the component under test.

Name — Harness name
character vector

The name for the harness you create, specified as the comma-separated pair consisting of
'"Name' and a valid MATLAB file name.

Example: 'Name', 'harness name'

1-37

1 Functions — Alphabetical List

Description — Harness description
character vector

The harness description, specified as the comma-separated pair consisting of
'Description' and a character vector.

Example: 'Description','A test harness'

Source — Component under test input

"Inport' (default) | 'Signal Builder' | 'From Workspace' | 'From File' |
'Test Sequence' | 'Signal Editor' | 'None' | 'Custom’

The input to the component, specified as the comma-separated pair consisting of
'Source' and one of the possible source values.
Example: 'Source', 'Signal Builder'

CustomSourcePath — Path to library block for custom source
character vector

For a custom source, the path to the library block to use as the source, specified as the
comma-separated pair consisting of 'CustomSourcePath' and the path.
Example: 'CustomSourcePath', 'simulink/Sources/Sine Wave'

Sink — Harness output
"Outport' (default) | 'Scope' | 'To Workspace' | 'To File' | 'None' | 'Custom'

The output of the component, specified as the comma-separated pair consisting of
'Sink' and one of the possible sink values.
Example: 'Sink', 'Scope’

CustomSinkPath — Path to library block for custom sink
character vector

For a custom sink, the path to the library block to use as the sink, specified as the comma-
separated pair consisting of 'CustomSinkPath' and the path.

Example: 'CustomSinkPath', 'simulink/Sinks/Terminator'

SeparateAssessment — Separate Test Assessment block
false (default) | true

1-38

sltest.harness.create

Option to add a separate Test Assessment block to the test harness, specified as a comma-
separated pair consisting of 'SeparateAssessment' and false or true.

Example: 'SeparateAssessment', true

SynchronizationMode — Specifies the synchronization behavior of the
component under test
'SyncOnOpenAndClose' (default) | 'SyncOnOpen' | 'SyncOnPushRebuildOnly"

An option to specify when the component under test synchronizes between the main
model and the test harness.

* 'SyncOnOpenAndClose' rebuilds the component under test from the main model
when the test harness opens, and pushes changes from the component under test to
the main model when the test harness closes.

* 'SyncOnOpen' rebuilds the component under test from the main model when the test
harness opens. It does not push changes from the component under test to the main
model when the test harness closes.

* 'SyncOnPushRebuildOnly"' rebuilds and pushes changes only when you manually
initiate rebuild or push for the entire test harness. For more information, see
“Synchronize Changes Between Test Harness and Model”.

Example: 'SynchronizationMode', 'SyncOnOpen'

CreateWithoutCompile — Option to create harness without compiling main
model

false (default) | true

Option to specify harness creation without compiling the main model, specified as a
comma-separated pair consisting of 'CreateWithoutCompile' and false or true.

false compiles the model and runs other operations to support the harness build.

true creates the harness without model compilation.
Example: 'CreateWithoutCompile', false
VerificationMode — Option to use normal (model), software-in-the-loop (SIL),

or processor-in-the-loop (PIL) block as component under test
'Normal' (default) | 'SIL' | 'PIL"'

1-39

1 Functions — Alphabetical List

1-40

An option to specify what type of block to use in the test harness, specified as a comma-
separated pair consisting of 'VerificationMode' and the type of block to use. SIL and
PIL blocks require Simulink Coder.

Example: 'VerificationMode', 'SIL'

RebuildOnOpen — Sets the harness rebuild command to execute when the
harness opens
false (default) | true

Option to have the harness rebuild when it opens, specified as the comma-separated pair
consisting of 'UseDefaultName' and false or true.

Example: 'RebuildOnOpen’', true

RebuildModelData — Sets configuration set and model workspace entries to be
updated during the test harness rebuild
false (default) | true

Option to have the configuration set and model workspace entries updated during test
harness rebuild, specified as the comma-separated pair consisting of
'RebuildModelData’ and true or false.

Example: 'RebuildModelData’, true

SaveExternally — Test harnesses saved as separate SLX files
false (default) | true

Option to have each test harness saved as a separate SLX file, specified as the comma-
separated pair consisting of 'SaveExternally' and true or false. A model cannot
use both external and internal test harness storage. If a model already has test harnesses,
a new test harness follows the storage type of the existing harnesses, which this option
does not override. See “Manage Test Harnesses”.

Example: 'SaveExternally',true

HarnessPath — Path to external test harness file
character vector

If 'SaveExternally' is specified, you can specify a location for the external harness
SLX file using a comma-separated pair consisting of 'HarnessPath' and a character
vector..

Example: 'HarnessPath', 'C:\MATLAB\SafetyTests'

sltest.harness.create

PostCreateCallback — Harness customization after creation
character vector

Use a post create callback function to customize a test harness. The post create callback
function executes after the harness is created. For more information, see “Customize Test
Harnesses”.

Example: 'PostCreateCallback', 'HarnessCustomization'

PostRebuildCallback — Harness customization after rebuild
character vector

Use a post rebuild callback function to customize a test harness. The post rebuild callback
function executes after the harness rebuild. For more information, see “Customize Test
Harnesses”.

Example: 'PostRebuildCallback', 'HarnessCustomization'

SchedulelInitTermReset — Drive model initialize, reset, and terminate ports
false (default) | true

Option to drive model initialize, reset, and terminate ports with the chosen test harness
source, specified as the comma-separated pair consisting of
'ScheduleInitTermReset' and false or true. This option only applies to harnesses
created for a block diagram.

Example: 'ScheduleInitTermReset',true

SchedulerBlock — Include scheduler block for periodic signals and function calls
'Test Sequence' | '"MATLAB Function' | 'None'

Option to include a scheduler block in the test harness, specified as the comma-separated
pair consisting of 'SchedulerBlock' and the type of block to use. The block is included
if the test harness is created for a model block diagram or a Model block and contains
function calls or periodic event ports. To include no scheduler block and connect all ports
to harness source blocks, use 'None"' .

Example: 'SchedulerBlock', 'Test Sequence'

Example: 'SchedulerBlock"', 'None'

AutoShapeInputs — Match scalar and double value source to input signal
dimension
false (default) | true

1-41

1 Functions — Alphabetical List

1-42

Option to shape scalar and double values to match the dimension of the input signals to
the component under test, specified as the comma-separated pair consisting of
"AutoShapeInputs' and false or true. This option only applies to harnesses with
Inport, Constant, Signal Builder, From Workspace, or From File blocks.

Example: 'AutoShapelInputs', true

Compatibility Considerations

DriveFcnCallWithTestSequence in sltest.harness.create

is not recommended
Not recommended starting in R2018b

Starting with the R2018b release, you can use the 'SchedulerBlock' option to include
a scheduler block when creating a test harness. The name-value pair
'SchedulerBlock', 'Test Sequence' uses a Test Sequence scheduler block and
replaces 'DriveFcnCallWithTestSequence', true.

'SchedulerBlock' provides more scheduler options, and creates a simplified block
interface compared to 'DriveFcnCallWithTestSequence'. To update your code, for
instances of sltest.harness.create, replace

'DriveFcnCallWithTestSequence', true with 'SchedulerBlock', 'Test
Sequence'.

See Also
sltest.harness.check | sltest.harness.clone|sltest.harness.close |
sltest.harness.convert | sltest.harness.delete | sltest.harness.export |
sltest.harness.find | sltest.harness.load | sltest.harness.open |
sltest.harness.set

Introduced in R2015a

sltest.harness.delete

sltest.harness.delete

Delete test harness

Syntax

sltest.harness.delete(harnessOwner, harnessName)

Description

sltest.harness.delete(harnessOwner,harnessName) deletes the harness
harnessName associated with harnessOwner.

Examples

Delete a Harness Associated With a Subsystem

Delete the test harness controller harness, which is associated with the
Controller subsystem in the f14 model.

f14;
sltest.harness.create('fl4/Controller', 'Name', 'controller harness');
sltest.harness.delete('fl4/Controller', 'controller harness');

Delete a Harness Associated With a Top-level Model

Delete the test harness bd _harness, which is associated with the model f14.

1-43

1 Functions — Alphabetical List

1-44

f14;
sltest.harness.create('f14"', 'Name', 'bd harness');
sltest.harness.delete('f14"', 'bd harness');

Input Arguments

harnessOwner — Model or component
character vector | double

Model or component handle or path, specified as a character vector or double.
Example: 1.9500e+03
Example: 'model name'

Example: 'model name/Subsystem'

harnessName — Harness name
character vector

The name of the harness, specified as a character vector.

Example: 'harness name'

See Also

sltest.harness.check | sltest.harness.clone|sltest.harness.close |
sltest.harness.create | sltest.harness.export|sltest.harness.find |
sltest.harness.load | sltest.harness.open | sltest.harness.push |
sltest.harness.rebuild | sltest.harness.set

Introduced in R2015a

sltest.harness.export

sltest.harness.export

Export test harness to Simulink model

Syntax

sltest.harness.export(harnessOwner,harnessName, 'Name',modelName)

Description

sltest.harness.export(harnessOwner,harnessName, 'Name',modelName)
exports the harness harnessName, associated with the model or component
harnessOwner, to a new Simulink model specified by the pair 'Name',modelName.

The model must be saved prior to export.

Examples

Export a Harness to a New Model

Export the harness controller harness, which is associated with the Controller
subsystem of the f14 model. The new model name is model from harness.

f14;

sltest.harness.create('fl4/Controller', 'Name', 'controller harness');
save_system('fl1l4');

sltest.harness.export('fl4/Controller', 'controller harness', 'Name',...
'model from harness');

Input Arguments

harnessOwner — Model or component
character vector | double

1-45

1 Functions — Alphabetical List

1-46

Model or component handle or path, specified as a character vector or double
Example: 1.9500e+03
Example: 'model name'

Example: 'model name/Subsystem'

harnessName — Name of the harness from which to create the model
character vector

The name of the harness, specified as a character vector.

Example: 'harness name'

modelName — Name of the new model
character vector

A valid MATLAB filename for the model generated from the harness, specified as a
character vector.

Example: 'harness name'

See Also

sltest.harness.check | sltest.harness.clone|sltest.harness.close |
sltest.harness.create | sltest.harness.delete|sltest.harness.find |
sltest.harness.import | sltest.harness.load | sltest.harness.open |
sltest.harness.push|sltest.harness.rebuild | sltest.harness.set

Introduced in R2015a

sltest.harness.find

sltest.harness.find

Find test harnesses in model

Syntax

harnessList = sltest.harness.find(harnessOwner)
harnessList sltest.harness.find(harnessOwner,Name,Value)

Description

harnessList = sltest.harness.find(harnessOwner) returns a structure listing
harnesses and harness properties that exist for the component or model harnessOwner.

harnessList = sltest.harness.find(harnessOwner,Name,Value) uses
additional search options specified by one or more Name,Value pair arguments.

Examples

Use RegExp to Find Harnesses for a Model Component

Find harnesses for the f14 model and its first-level subsystems. The function matches
harness names according to a regular expression.

f14;
sltest.harness.create('f14"', 'Name', 'model harness');
sltest.harness.create('fl4/Controller', 'Name', 'Controller Harnessl');

harnessList = sltest.harness.find('f14"', 'SearchDepth',1, 'Name',"' [Hhlarnes+',...

'RegExp', 'on')
harnessList =
1x2 struct array with fields:

model
name

1-47

1 Functions — Alphabetical List

1-48

description

type

ownerHandle
ownerFullPath
ownerType

isOpen
canBeOpened
lockMode
verificationMode
savelIndependently
rebuildOnOpen
rebuildModelData
graphical
origSrc

origSink

Input Arguments

harnessOwner — Model or component

character vector | double

Model or component handle or path, specified as a character vector or double
Example: 1.9500e+03

Example: 'model name'

Example: 'model name/Subsystem'

Name-Value Pair Options

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'SearchDepth',2, '"Name', 'controller harness' searches the model or
component, and two lower hierarchy levels, for harnesses named controller harness.

Name — Harness name to search for
character vector | regular expression

sltest.harness.find

Harness name to search for in the model, specified as the comma-separated pair
consisting of 'Name' and a character vector or a regular expression. You can specify a
regular expression only if you also use the Name,Value pair 'RegExp','on"'.

Example: 'Name', 'sample harness''Name',' [Hh]arnes+'

RegExp — Ability to search using a regular expression
‘off' (default) | 'on'

Ability to search using a regular expression, specified as the comma-separated pair
consisting of 'RegExp' and 'off' or 'on'. When 'RegExp' is setto 'on', you can use
a regular expression with 'Name"'.

Example: 'RegExp', 'on'

SearchDepth — Subsystem levels to search
all levels (default) | nonnegative integer

Subsystem levels into harnessOwner to search for harnesses, specified as the comma-
separated pair consisting of 'SearchDepth' and an integer. For example:

0 searches harnessOwner.
1 searches harnessOwner and its subsystems.
2 searches harnessOwner, its subsystems, and their subsystems.

When you do not specify SearchDepth, the function searches all levels of
harnessOwner.

Example: 'SearchDepth',1

OpenOnly — Search option for open harnesses
'off"' (default) | 'on'

Search option to return only active harnesses, specified as the comma-separated pair
consisting of 'OpenOnly' and 'off' or 'on'.

Example: 'OpenOnly', 'on'

See Also

sltest.harness.check | sltest.harness.clone|sltest.harness.close |
sltest.harness.create | sltest.harness.delete|sltest.harness.export |

1-49

1 Functions — Alphabetical List

sltest.harness.load | sltest.harness.open | sltest.harness.push |
sltest.harness.rebuild | sltest.harness.set

Introduced in R2015a

sltest.harness.import

sltest.harness.import

Import Simulink model to test harness

Syntax

sltest.harness.import(harnessOwner, 'ImportFileName’,
importModel, 'ComponentName', TestedComponent)
sltest.harness.import(harnessOwner, 'ImportFileName’,
importModel, 'ComponentName', TestedComponent,Name,Value)

Description

sltest.harness.import(harnessOwner, 'ImportFileName',

importModel, 'ComponentName',TestedComponent) creates a test harness from the
Simulink model importModel, with a default harness name, associated with
harnessOwner, with TestedComponent the harness component under test.

sltest.harness.import(harnessOwner, 'ImportFileName',

importModel, 'ComponentName',TestedComponent,Name,Value) uses additional
Name, Value arguments to specify test harness properties.

Examples

Programmatically Create a Test Harness from a Standalone Model

This example shows how to use sltest.harness.import to create a test harness by
importing a standalone verification model. You create a test harness for a basic cruise
control subsystem.

The standalone model contains a Signal Builder block driving a copy of the Controller

subsystem, with a subsystem verifying that the throttle output goes to 0 if the brake is
applied for three consecutive time steps.

1-51

1 Functions — Alphabetical List

exPath = fullfile(matlabroot, 'examples’', 'simulinktest');
mainModel = 'sltestBasicCruiseControl';
harnessModel = 'sltestBasicCruiseControlHarnessModel';

1. Load the main model.

load system(fullfile(exPath,mainModel))

2. Create a test harness from the standalone model. Create the harness for subsystem
Controller in the main model, with Controller the harness component under test.

sltest.harness.import([mainModel '/Controller'], 'ImportFileName',harnessModel, ...

'ComponentName', [harnessModel '/Controller'], 'Name',...
'VerificationSubsystemHarness')

3. Return the properties of the new test harness.
testHarnessProperties = sltest.harness.find([mainModel '/Controller'])

testHarnessProperties = Ix2 struct array with fields:
model
name
description
type
ownerHandle
ownerFullPath
ownerType
isOpen
canBeOpened
lockMode
verificationMode
saveExternally
rebuildOnOpen
rebuildModelData
postRebuildCallback
graphical
origSrc
origSink
synchronizationMode

close system(mainModel, Q)

1-52

sltest.harness.import

Input Arguments

harnessOwner — Model or component
character vector | double

Model or component handle or path, specified as a character vector or double
Example: 1.9500e+03
Example: 'model name'

Example: 'model name/Subsystem'

importModel — File path
character vector

Path to the standalone model to import as a test harness
Example: 'C:\MATLAB\sltestBasicCruiseControlTestModel'

TestedComponent — Tested component in standalone model
character vector

The name or path and name of the tested component in the standalone model. After
import, this component is linked to the harnessOwner component in the main model.

Example: 'Controller'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Name', 'harness name', 'RebuildOnOpen’',true

Name — Harness name
character vector

The name for the harness you create, specified as the comma-separated pair consisting of
"Name' and a valid MATLAB filename.

Example: 'Name', 'harness name'

1-53

1 Functions — Alphabetical List

SynchronizationMode — Specifies the synchronization behavior of the
component under test
'SyncOnOpenAndClose"' (default) | 'SyncOnOpen' | 'SyncOnPushRebuildOnly"

An option to specify when the component under test synchronizes between the main
model and the test harness.

* 'SyncOnOpenAndClose' rebuilds the component under test from the main model
when the test harness opens, and pushes changes from the component under test to
the main model when the test harness closes.

* 'SyncOnOpen' rebuilds the component under test from the main model when the test
harness opens. It does not push changes from the component under test to the main
model when the test harness closes.

* 'SyncOnPushRebuildOnly"' rebuilds and pushes changes only when you manually
initiate rebuild or push for the entire test harness. For more information, see
“Synchronize Changes Between Test Harness and Model”.

Example: 'SynchronizationMode', 'SyncOnOpen'

RebuildOnOpen — Sets the harness rebuild command to execute when the
harness opens
false (default) | true

Option to have the harness rebuild when it opens, specified as the comma-separated pair
consisting of 'UseDefaultName' and false or true.

Example: 'RebuildOnOpen', true

RebuildModelData — Sets configuration set and model workspace entries to be
updated during the test harness rebuild
false (default) | true

Option to have the configuration set and model workspace entries updated during test
harness rebuild, specified as the comma-separated pair consisting of
'RebuildModelData’' and true or false.

Example: 'RebuildModelData’, true

SaveExternally — Test harnesses saved as separate SLX files
false (default) | true

Option to have each test harness saved as a separate SLX file, specified as the comma-
separated pair consisting of 'SaveExternally' and true or false. A model cannot

sltest.harness.import

use both external and internal test harness storage. If a model already has test harnesses,
a new test harness follows the storage type of the existing harnesses, which this option
does not override. See “Manage Test Harnesses”.

Example: 'SaveExternally', true

HarnessPath — Path to external test harness file
character vector

If 'SaveExternally' is specified, you can specify a location for the external harness
SLX file using a comma-separated pair consisting of 'HarnessPath' and a character
vector..

Example: 'HarnessPath', 'C:\MATLAB\SafetyTests"

See Also

sltest.harness.clone | sltest.harness.create|sltest.harness.export |
sltest.harness.push|sltest.harness.rebuild | sltest.harness.set

Topics
“Create Test Harnesses from Standalone Models”

Introduced in R2017a

1-55

1 Functions — Alphabetical List

1-56

sltest.harness.load

Load test harness

Syntax

sltest.harness.load(harnessOwner, harnessName)

Description

sltest.harness.load(harnessOwner,harnessName) loads the harness
harnessName into memory. harnessName is associated with the model or component
harnessOwner.

Examples

Load a Harness Associated With a Subsystem

Load the test harness controller harness, which is associated with the Controller
subsystem in the f14 model.

f14;

sltest.harness.create('fl4/Controller', 'Name', 'controller harness');
save system('f14');

sltest.harness.load('fl4/Controller', 'controller harness');

Input Arguments

harnessOwner — Model or component
character vector | double

Model or component handle or path, specified as a character vector or double.
Example: 1.9500e+03

sltest.harness.load

Example: 'model name'

Example: 'model name/Subsystem'

harnessName — Harness name
character vector

The name of the harness, specified as a character vector.

Example: 'harness name'

See Also

sltest.harness.check | sltest.harness.close|sltest.harness.create |
sltest.harness.delete | sltest.harness.export|sltest.harness.find |
sltest.harness.open|sltest.harness.push|sltest.harness.rebuild |
sltest.harness.set

Introduced in R2015a

1-57

1 Functions — Alphabetical List

1-58

sltest.harness.move

Move test harness from linked instance to library block or to a different harness owner

Syntax

sltest.harness.move(HarnessOwner,HarnessName)
sltest.harness.move(HarnessOwner,HarnessName, NewPath)
sltest.harness.move(HarnessOwner,HarnessName,Name,Value)

Description

sltest.harness.move(HarnessOwner,HarnessName) moves the test harness
HarnessName associated with the block HarnessOwner from the linked instance to its
reference library block. Moving the test harness removes it from the linked instance. This
command results in an error if HarnessName is not a linked instance.

sltest.harness.move(HarnessOwner,HarnessName, NewPath) moves the test
harness harnessName associated with the block HarnessOwner to the destination path
specified by NewPath.

sltest.harness.move(HarnessOwner,HarnessName,Name,Value) moves the test
harness HarnessName associated with HarnessOwner using additional options specified
by one or more Name, Value pairs.

Examples

Move Test Harness

Move the test harness Baseline controller tests from the linked instance of the
Controller subsystem to the library subsystem.

% Open the model
open_system sltestHeatpumpLibraryLinkExample
% Move the test harness

sltest.harness.move

sltest.harness.move('sltestHeatpumpLibraryLinkExample/Controller', ...
'Baseline controller tests')

Move the test harness Requirements Tests from the linked instance of the
Controller subsystem to the Plant subsystem and save it as
Requirements Tests Moved.

sltest.harness.move('sltestHeatpumpLibraryLinkExample/Controller',...

'Requirements Tests', 'DestinationOwner', 'sltestHeatpumpLibraryLinkExample/Plant"’,...
'Name', 'Requirements Tests Moved')

Input Arguments

HarnessOwner — Model or component name
character vector | double

Model or component handle or path, specified as a character vector or a double.
Example: 1.9500e+03
Example: 'model name'

Example: 'model name/Subsystem'

HarnessName — Harness name
character vector

The name of the harness, specified as a character vector.

Example: 'harness name'

NewPath — Destination path
character vector

The destination path of the moved test harness, specified as a character vector.

Example: 'model name/Subsystem2'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

1-59

1 Functions — Alphabetical List

1-60

You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'DestinationOwner', 'model3/
Controller3', 'Name', 'newMovedHarness'

DestinationOwner — Owner block to which the harness is moved
harnessOwner (default) | character vector

Owner block to which the test harness is moved, specified as the comma-separated pair
consisting of 'DestinationOwner' and a character vector.

Example: 'DestinationOwner', 'model3/Controller3’

Name — Name of moved test harness
name of the test harness (default) | character vector

The name of the moved test harness, specified as the comma-separated pair consisting of
"Name' and a character vector. If a value is not specified for Name, the name of the test
harness is used by default.

Example: 'Name', 'newMovedHarness'

See Also

sltest.harness.close | sltest.harness.create|sltest.harness.delete |
sltest.harness.find | sltest.harness.open

Introduced in R2016a

sltest.harness.open

sltest.harness.open

Open test harness

Syntax

sltest.harness.open(harnessOwner, harnessName)

Description

sltest.harness.open(harnessOwner,harnessName) opens the harness
harnessName, which is associated with the model or component harnessOwner.

Examples

Open a Harness Associated With a Subsystem

Open the test harness controller harness, which is associated with the Controller
subsystem in the 14 model.

f14;
sltest.harness.create('fl4/Controller', 'Name', 'controller harness');
sltest.harness.open('fl4/Controller', 'controller harness');

Open a Harness Associated With a Model

Open the test harness sample harness, which is associated with the f14 model.

1-61

1 Functions — Alphabetical List

1-62

f14;
sltest.harness.create('f14"', 'Name', 'sample harness');
sltest.harness.open('fl4', 'sample harness');

Input Arguments

harnessOwner — Model or component
character vector | double

Model or component handle or path, specified as a character vector or double.
Example: 1.9500e+03
Example: 'model name'

Example: 'model name/Subsystem'

harnessName — Harness name
character vector
The name of the harness, specified as a character vector.

Example: 'harness name'

See Also
sltest.harness.check | sltest.harness.close|sltest.harness.create |
sltest.harness.delete | sltest.harness.export|sltest.harness.find |
sltest.harness.load | sltest.harness.push|sltest.harness.rebuild |
sltest.harness.set

Introduced in R2015a

sltest.harness.push

sltest.harness.push

Push test harness workspace entries and configuration set to model

Syntax

sltest.harness.push(harnessOwner,harnessName)

Description

sltest.harness.push(harnessOwner,harnessName) pushes the configuration
parameter set and workspace entries associated with the component under test from the
test harness harnessName to the main model containing the model or component
harnessOwner.

Examples

Push Parameters from Harness to Model

Push the parameters of the harness controller harness, which is associated with the
Controller subsystem in the f14 model, to the f14 model.

f14;

sltest.harness.create('fl4/Controller', 'Name', 'controller harness');
sltest.harness.push('fl4/Controller', 'controller harness')

Input Arguments

harnessOwner — Model or component
character vector | double

Model or component handle, or path, specified as a character vector or double
Example: 1.9500e+03

1-63

1 Functions — Alphabetical List

Example: 'model name'

Example: 'model name/Subsystem'

harnessName — Harness name
character vector

The name of the harness, specified as a character vector.

Example: 'harness name'

See Also

sltest.harness.check | sltest.harness.close|sltest.harness.create |
sltest.harness.delete | sltest.harness.export|sltest.harness.find |
sltest.harness.load | sltest.harness.open | sltest.harness.rebuild |
sltest.harness.set

Introduced in R2015a

1-64

sltest.harness.rebuild

sltest.harness.rebuild

Rebuild test harness and update workspace entries and configuration parameter set
based on main model

Syntax

sltest.harness.rebuild(harnessOwner,harnessName)

Description

sltest.harness.rebuild(harnessOwner,harnessName) rebuilds the test harness
harnessName based on the main model containing harnessOwner. The function
transfers the configuration set and workspace entries associated with harnessOwner to
the test harness harnessName. The function also rebuilds conversion subsystems in the
test harness.

Examples

Rebuild Parameters from Harness to Model

Rebuild the harness controller harness, which is associated with the Controller
subsystem in the 14 model.

f14;
sltest.harness.create('fl4/Controller', 'Name', 'controller harness');
sltest.harness.rebuild('fl4/Controller', 'controller _harness');

Input Arguments

harnessOwner — Model or component
character vector | double

Model or component handle, or path, specified as a character vector or double

1-65

1 Functions — Alphabetical List

Example: 1.9500e+03
Example: 'model name'

Example: 'model name/Subsystem'

harnessName — Harness name
character vector

The name of the harness, specified as a character vector.

Example: 'harness name'

See Also

sltest.harness.check | sltest.harness.close|sltest.harness.create |
sltest.harness.delete | sltest.harness.export|sltest.harness.find |
sltest.harness.load | sltest.harness.open | sltest.harness.push |
sltest.harness.set

Introduced in R2015a

1-66

sltest.harness.set

sltest.harness.set

Change test harness property

Syntax

sltest.harness.set(harnessOwner,harnessName,Name,Value)

Description

sltest.harness.set(harnessOwner,harnessName,Name,Value) changes a
property, specified by one Name,Value pair argument, for the test harness harnessName
owned by the model or component harnessOwner.

Examples

Change the Name of a Test Harness

This example shows how to change the name of a test harness using
sltest.harness.set.

Create a Test Harness

Load the f14 model and create a test harness for the Controller subsystem.

load_system('f14")
sltest.harness.create('fl4/Controller', 'Name', 'Harnessl')

Change the Test Harness Name

Change the name from Harness1 to ControllerHarness.

sltest.harness.set('fl4/Controller', 'Harnessl', 'Name', 'ControllerHarness')

1-67

1 Functions — Alphabetical List

1-68

Close the Model

close system('f14',0)

Input Arguments

harnessOwner — Model or component

character vector | double

Model or component handle, or path, specified as a character vector or double
Example: 1.9500e+03

Example: 'model name'

Example: 'model name/Subsystem'

harnessName — Harness name

character vector

The name of the harness, specified as a character vector.

Example: 'harness name'

Name-Value Pair Options

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Name', 'updated harness' specifies a new harness name
'updated harness'.

Name — New harness name
character vector

The new name for the harness, specified as the comma-separated pair consisting of
"Name' and a valid MATLAB filename.

Example: 'Name', 'new harness name'

sltest.harness.set

Description — New harness description
character vector

The new description for the harness, specified by the comma-separated pair consisting of
‘Description' and a character vector.

Example: 'Description’, 'An updated test harness'

SynchronizationMode — Specifies the synchronization behavior of the
component under test
'SyncOnOpenAndClose' (default) | 'SyncOnOpen' | 'SyncOnPushRebuildOnly'

An option to specify when the component under test synchronizes between the main
model and the test harness.

* 'SyncOnOpenAndClose' rebuilds the component under test from the main model
when the test harness opens, and pushes changes from the component under test to
the main model when the test harness closes.

* 'SyncOnOpen’ rebuilds the component under test from the main model when the test
harness opens. It does not push changes from the component under test to the main
model when the test harness closes.

* 'SyncOnPushRebuildOnly"' rebuilds and pushes changes only when you manually
initiate rebuild or push for the entire test harness. For more information, see
“Synchronize Changes Between Test Harness and Model”.

Example: 'SynchronizationMode', 'SyncOnOpen'

RebuildOnOpen — Sets the harness rebuild command to execute when the
harness opens
false (default) | true

Option to have the harness rebuild when it opens, specified as the comma-separated pair
consisting of 'UseDefaultName' and false or true.

Example: 'RebuildOnOpen’',true

RebuildModelData — Sets configuration set and model workspace entries to be
updated during the test harness rebuild
false (default) | true

Option to have the configuration set and model workspace entries updated during test
harness rebuild, specified as the comma-separated pair consisting of
'RebuildModelData’ and true or false.

1-69

1 Functions — Alphabetical List

Example: 'RebuildModelData’, true

RebuildWithoutCompile — Sets the harness to rebuild without compiling the
main model
false (default) | true

Option to rebuild the harness without compiling the main model, in which cached
information from the most recent compile is used to update the test harness workspace,
and conversion subsystems are not updated, specified as the comma-separated pair
consisting of 'RebuildWithoutCompile’' and true or false.

Example: 'RebuildWithoutCompile’,true

PostRebuildCallback — Harness customization after rebuild
character vector

Use a post rebuild callback function to customize a test harness. The post rebuild callback
function executes after the harness rebuild. For more information, see “Customize Test
Harnesses”.

Example: 'PostRebuildCallback', 'HarnessCustomization'

See Also
sltest.harness.check | sltest.harness.close|sltest.harness.create |
sltest.harness.delete | sltest.harness.export|sltest.harness.find |
sltest.harness.load | sltest.harness.open | sltest.harness.push |
sltest.harness. rebuild

Introduced in R2015a

sltest.import.sidvData

sltest.import.sldvData

Create test cases from Simulink Design Verifier results

Syntax

[owner, testHarness,testFile]
[owner, testHarness,testFile]
dataFile, 'TestCase', testcase)
[owner, testHarness,testFile] = sltest.import.sldvData(dataFile,Name,
Value)

sltest.import.sldvData(dataFile)
sltest.import.sldvData(

Description

[owner,testHarness,testFile] = sltest.import.sldvData(dataFile)
creates a test harness and test file using Simulink Design Verifier™ analysis results
contained in dataFile. The function returns the model component owner associated
with the test case, the testHarness, and the testFile

[owner, testHarness,testFile] = sltest.import.sldvData(
dataFile, 'TestCase', testcase) uses the specified test case for the import
operation.

[owner, testHarness,testFile] = sltest.import.sldvData(dataFile,Name,
Value) uses additional options specified by one or more Name,Value pair arguments.

Examples

Create Test Cases for ShiftLogic Subsystem

Create a test file and test harness for the ShiftLogic subsystem in the
sldvdemo autotrans model. The inputs reflect the analysis objectives.

Analyze the ShiftLogic subsystem with Simulink Design Verifier to generate test inputs for
subsystem coverage. The results data file is ShiftLogic sldvdata.mat.

1-71

1 Functions — Alphabetical List

1-72

Create the test case.

[component,harness,testfile] = sltest.import.sldvData...
('./sldv_output/ShiftLogic/ShiftLogic sldvdata.mat', 'TestHarnessName',...
'"CoverageHarness', 'TestFileName', 'CoverageTests')

Open the test harness.
sltest.harness.open(component,harness)
Open the test file.

open(testfile)

Create Test Cases for ShiftLogic Subsystem Using an Existing Test Harness

Create a test file and test harness for the ShiftLogic subsystem in the
sldvdemo_autotrans model, using an existing test harness.

Analyze the ShiftLogic subsystem with Simulink Design Verifier to generate test inputs for
subsystem coverage. The results data file is ShiftLogic sldvdata.mat. The existing
test harness is named DatafileHarness.

Create the test case.

[component,harness,testfile] = sltest.import.sldvData...
('./sldv_output/ShiftLogic/ShiftLogic sldvdata.mat',...
'TestHarnessName', 'DatafileHarness', 'TestFileName', 'CoverageTests', ...
'CreateHarness', false)

Open the test harness.

sltest.harness.open(component,harness)

Open the test file.

open(testfile)

Input Arguments

dataFile — Data file full path name
character vector | string scalar

sltest.import.sidvData

Path and file name of the data file generated by Simulink Design Verifier analysis,
specified as a character vector or string scalar.

Example: 'ShiftLogic0/ShiftLogicO sldvdata.mat'

Example: 'Controller sldvdata.mat'

testcase — Test case
character vector | string scalar

Full path name of test case to use, specified as a character vector or string scalar.

Name-Value Pair Options

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'TestHarnessName', 'DatafileHarness', 'CreateHarness', false

CreateHarness — Create a test harness for the model or subsystem
true (default) | false

Option to add a test harness to the model or model component, which corresponds to the
test cases in the test file, specified as a comma-separated pair consisting of
'CreateHarness' and true or false.

If you specify true, use a new test harness name with the ' TestHarnessName' name-
value pair.

If you specify false, use an existing test harness name with the 'TestHarnessName'
name-value pair.

Note If the model under analysis is a test harness, the CreateHarness default value is
false.

Example: 'CreateHarness', false

TestHarnessName — Harness name
character vector | string scalar

1-73

1 Functions — Alphabetical List

The test harness used for running the test cases, specified as the comma-separated pair
consisting of ' TestHarnessName' and the name of a test harness.

Use a new test harness name if 'CreateHarness' is true and an existing test harness
name if 'CreateHarness' is false.
Example: 'TestHarnessName', 'ModelCoverageTestHarness'

TestHarnessSource — Source of the new test harness
"Inport' (default) | 'Signal Builder!

The source of the new test harness, specified as the comma-separated pair consisting of
'TestHarnessSource' and 'Inport' or 'Signal Builder'.

Use a new test harness name if 'CreateHarness' is true and an existing test harness
name if 'CreateHarness' is false.
Example: 'TestHarnessName', 'ModelCoverageTestHarness'

TestFileName — Test file name
character vector | string scalar

The name for the test file created for the test cases, specified as the comma-separated
pair consisting of ' TestFileName' and the name of a test file.

Example: 'TestFileName', 'ModelCoverageTests'

ExtractedModelPath — Path of extracted model
character vector | string scalar

The path to the model extracted from Simulink Design Verifier analysis, specified as the
comma-separated pair consisting of 'ExtractedModelPath' and a path.

Simulink Test uses the extracted model to generate the test harness. By default,
sltest.import.sldvData looks for the extracted model in the output folder specified
in the Design Verifier configuration parameters. Use Ext ractedModelPath if the
extracted model is in a different location.

Simulink Design Verifier does not use an extracted model when you analyze a top-level
model. When you generate test cases for a top-level model, Simulink Test does not use
'ExtractedModelPath’.

Example: 'Tests/ExtractedModels/"

sltest.import.sidvData

See Also

Topics
“Increase Coverage by Generating Test Inputs”

Introduced in R2015b

1-75

1 Functions — Alphabetical List

1-76

sltest.testmanager.clear

Clear test files from the Test Manager

Syntax

sltest.testmanager.clear

Description

sltest.testmanager.clear clears all test files from the Simulink Test Test Manager.
Changes to unsaved test files are not saved.

Examples

Clear Test File from Test Manager

% Create test file, test suite, and test case structure

tf = sltest.testmanager.TestFile('API Test File');

ts = createTestSuite(tf, 'API Test Suite');

tc = createTestCase(ts, 'simulation', 'Simulation Test Case');

% Clear test file from test manager
sltest.testmanager.clear;

See Also

sltest.testmanager.close | sltest.testmanager.view

Topics
“Create and Run Test Cases with Scripts”

Introduced in R2015a

sltest.testmanager.clearResults

sltest.testmanager.clearResults

Clear results from Test Manager

Syntax

sltest.testmanager.clearResults

Description

sltest.testmanager.clearResults clears all results data from the Test Manager
Results and Artifacts pane.

Examples

Clear Results From Test Manager

% Run test files in Test Manager
sltest.testmanager.run;

% Clear results from Test Manager
sltest.testmana